# Daniel Siegel

## Find Related People by Keyword

Ph.D., Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and University of Potsdam, Germany, 2015

Diploma in Physics, University of Freiburg, Germany, 2011

A unifying theme of my research is the pursuit to connect fundamental physics with the cosmos. I am excited about multimessenger and gravitational-wave astronomy with Advanced LIGO and Virgo and its partner facilities in the electromagnetic band and the neutrino/high-energy particle sector. My research interests cover a broad range of topics including gravitational physics, nuclear astrophysics, high-energy astrophysics, and transient astronomy. Much of my research centers around unraveling the fundamental physics and astrophysics of compact binary mergers involving neutron stars and pertains to questions such as

- What are the physical processes that govern the dynamics of neutron star mergers and that give rise so observable electromagnetic radiation?
- How do such mergers and other astrophysical systems synthesize heavy elements in the Universe via the rapid neutron capture process (r-process)?
- What are the broader impacts on nuclear (astro-)physics and cosmology? What do such astrophysical phenomena tell us about how our Universe was chemically assembled?

In order to study these prime targets of multi-messenger astronomy, I perform fully general-relativistic magnetohydrodynamic simulations on supercomputers, including microphysical equations of state, weak interactions, neutrino radiation transport, and nuclear reaction networks, in combination with analytical and semi-analytical modeling. This allows me to obtain self-consistent predictions from first principles that can directly be compared to data from multi-messenger astronomy.

### Keywords

gravitational physics, compact binary mergers, numerical relativity & computational relativistic astrophysics, nuclear astrophysics, high-energy astrophysics, transient astronomy

### Selected publications

- Siegel D. M., 2019, GW170817-the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process, invited contribution to the EPJA Topical Issue "First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics", to appear in EPJA, arXiv: 1901.09044
- Siegel D. M., Barnes J. & Metzger B., 2019, Collapsars as a major source of r-process elements, Nature 569, 241, arXiv: 1810.00098

- Siegel D. M. & Metzger B., 2017, Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r-process nucleosynthesis, PRL 119, 231102, arXiv: 1705.05473 (selected PRL Editors' Suggestion, selected for a Viewpoint in Physics)

### Journal publications

- Zevin M., Kremer, K., Siegel D.M., Coughlin S., Tsang T.-H., Berry C.P.L., Kalogera V., Can Neutron-Star Mergers Explain the r-process Enrichment in Globular Clusters?, ApJ submitted, arXiv:1906.11299

- Siegel D. M., 2019, GW170817-the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process, invited contribution to the EPJA Topical Issue "First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics", to appear in EPJA, arXiv: 1901.09044
- Siegel D. M., Barnes J. & Metzger B., 2019, Collapsars as a major source of r-process elements, Nature 569, 241, arXiv: 1810.00098
- Horowitz C. J. et al. 2018, r-Process Nucleosynthesis: Connecting Rare-Isotope Beam Facilities with the Cosmos, topical review, to appear in J. Phys. G, arXiv: 1805.04637
- Siegel D. M., Mösta P., Desai D. & Wu S., 2018, Recovery schemes for primitive variables in general-relativistic magnetohydrodynamics, ApJ 859, 71, arXiv: 1712.07538
- Siegel D. M. & Metzger B., 2018, Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers, ApJ 858, 52, arXiv: 1711.00868
- Siegel D. M. & Metzger B., 2017, Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r-process nucleosynthesis, PRL 119, 231102, arXiv: 1705.05473 (selected PRL Editors' Suggestion, selected for a Viewpoint in Physics)
- Siegel D. M. & Ciolfi R., 2016, Electromagnetic emission from long-lived binary neutron star merger remnants I: formulation of the problem, ApJ 819, 14, arXiv: 1508.07911
- Siegel D. M. & Ciolfi R., 2016, Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra, ApJ 819, 14, arXiv: 1508.07939
- Ciolfi R. & Siegel D. M., 2015, Short gamma-ray bursts in the 'time-reversal' scenario, ApJL 798, L36, arXiv: 1411.2015
- Siegel D. M., Ciolfi R. & Rezzolla L., 2014, Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts, ApJL 785, L6, arXiv: 1401.4544
- Siegel D. M. & Roth M., 2014, An upper bound from helioseismology on the stochastic background of gravitational waves, ApJ 784, 88, arXiv: 1401.6888
- Siegel D. M., Ciolfi R., Harte A. I. & Rezzolla L., 2013, Magnetorotational instability in relativistic hypermassive neutron stars, PRD Rap. Comm. 87, 121302(R), arXiv: 1302.4368
- Siegel D. M. & Roth M., 2012, On the feasibility of employing solar-like oscillators as detectors for the stochastic background of gravitational waves, Astron. Not. 333, 978, arXiv: 1401.6883
- Siegel D. M. & Roth M., 2011, Excitation of stellar oscillations by gravitational waves: hydrodynamic model and numerical results for the sun, ApJ 729, 137, arXiv: 1103.0373
- Siegel D. M. & Roth M., 2010, Excitation of non-radial stellar oscillations by gravitational waves: a first model, MNRAS 408, 1742, arXiv: 1006.4803

### Conference proceedings and misc.

- Chornock, R. et al. 2019, Multi-Messenger Astronomy with Extremely Large Telescopes, Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 237; Bulletin of the American Astronomical Society, Vol. 51, Issue 3, id. 237 (2019), arXiv: 1903.04629
- Foley, R. et al. 2019, Gravity and Light: Combining Gravitational Wave and Electromagnetic Observations in the 2020s, Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 295; Bulletin of the American Astronomical Society, Vol. 51, Issue 3, id. 295 (2019), arXiv: 1903.04553

- Aprahamian, A., et al., 2018, FRIB and the GW170817 Kilonova, FRIB Theory Alliance workshop, arXiv: 1809.00703
- Siegel D. M. & Ciolfi R., 2015, Magnetic field amplification in hypermassive neutron stars via the magnetorotational instability, in Proc. of the 1st Karl Schwarzschild Meeting on Gravitational Physics, Frankfurt, 2013, ed. P. Nicolini et al., Springer Proc. Phys. 170 (2015), arXiv: 1401.5275 (awarded Karl Schwarzschild Prize)
- Siegel D. M. & Ciolfi R., 2015, Magnetically-induced outflows from binary neutron star merger remnants, Swift: 10 Years of Discovery, Rome, 2014, Proc. Sci. (SWIFT 10)169 (2015), arXiv: 1505.01423
- Ciolfi R. & Siegel D. M., 2015, Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario, Swift: 10 Years of Discovery, Rome, 2014, Proc. Sci. (SWIFT 10)108 (2015), arXiv: 1505.01420

### Code publications

- Siegel D. M. & Mösta P., 2018, GRMHD_con2prim: a framework for the recovery of primitive variables in general-relativistic magnetohydrodynamics, code publication, Zenodo, doi:10.5281/zenodo.1213306

Name | Role |
---|---|

Matthew Dutcher | MSc Candidate |