Intermediate Laboratory (PHYS*3510)
Code and section: PHYS*3510*01
Term: Winter 2019
Instructor: Christian Schultz-Nielsen
Details
Section 1: Course Information
Section 1.1: Course Instructor
Course Instructor | Office Location | |
---|---|---|
Christian Schultz-Nielsen | MacNaughton 435C | cschultz@uoguelph.ca |
Section 1.2: Graduate Teaching Assistant
Teaching Assisstant | Office Location | |
---|---|---|
Jeff De Vlugt | MacNaughton 406 | jdevlugt@uoguelph.ca |
Section 1.3: Laboratory Technicians
Laboratory Technicians | Office Location | |
---|---|---|
Dave Urbshas | MacNaughton 104 | durbshas@uoguelph.ca |
Section 1.4: Calendar Description
This is a modular course for students in any physics-related major in which techniques of nuclear, solid state and molecular physics will be studied.
Section 1.5: Credit Weighting
PHYS*3510 is a 0.50 credit weighted course. Per the University of Guelph Undergraduate Calendar, a 0.50 credit course carries the expectation of 10 – 12 student-effort hours per week, including time allocated to lectures, labs and tutorials.
Section 1.6: Course Aims
This course allows students to perform important experiments that illustrate topics discussed in thirdand fourth-year physics courses. The students will obtain experience using modern laboratory instruments and practice methods of data acquisition and analysis. The student’s scientific communication skills and ability to search the scientific literature will be developed.
Section 1.7: Learning Objectives
At the successful completion of this course, the student will have:
- become proficient with various experimental physics tools, including multimeters, oscilloscopes and multichannel analyzers.
- learned to operate relatively independently in an experimental physics setting.
- mastered the analysis of experimental data, using accepted error analysis methodologies, to verify theoretical predictions.
- built upon their experience in PHYS*2180 to develop proper scientific lab notebook protocols.
- demonstrated intermediate proficiency with laboratory and radiation safety protocols, including proper handling of sealed gamma-ray emitting sources.
- further developed the written and verbal skills introduced in PHYS*2180 to disseminate experimental results to a variety of audiences via scientific papers, posters, and oral presentations.
- identified and synthesized relevant scientific literature to present a coherent scientific argument at a level appropriate to their peers.
- demonstrated proficiency at incorporating theoretical knowledge developed in other physics courses and the scientific literature to draw appropriate inferences and conclusions from experimental results.
Section 1.8: Instructor’s Role and Responsibility to Students
The instructor’s role is to aid students in their performance of various experiments and provide guidance as students develop their mastery of the underlying physical concepts associated with these experiments.
Every student has the right to participate and contribute in the laboratory and other course activities. If a student feels that there is something preventing their full contribution, they must notify the course
instructor or teaching assistants as soon as possible. We cannot address problems that we are not
aware of!
The instructor will ensure that the learning environment is free from harassment of any form. Offensive or inappropriate (homophobic, racist, sexist, etc.) comments are strictly prohibited. Offending students will be required to leave the lab or class, and a mark of zero will be given for any assessments arising from that course activity. More serious cases will also be forwarded to the University of Guelph Judicial Committee, where the maximum penalty is suspension or expulsion from the University of Guelph. For more details, students should consult the University of Guelph’s current Policy on Non-Academic Misconduct.
Section 1.9: Students’ Learning Responsibility
Students are expected to take advantage of the assigned laboratory hours, as these are the only hours where students are guaranteed access to the course instructor and teaching assistant. All students are expected to attend the assigned.
Students who do (or may) fall behind due to illness, work, or extra-curricular activities (including varsity sports, student leadership activities, etc.) are advised to keep the instructor informed such that extra resources or accommodation can be provided, if appropriate.
Students are expected to complete their lab notebooks, formal lab reports and term projects in a timely fashion. Students are provided with deadlines for course materials at the beginning of the semester and are expected to work towards those deadlines accordingly. Extensions will not be granted except in exceptional medical or compassionate circumstances. Manage your time accordingly – being busy with other coursework is not an acceptable reason to receive an extension.
Section 1.10: Relationship With Other Courses & Labs
Section 1.10.1: Prerequisite Courses
Students must have completed PHYS*2180. Some labs will draw upon physics concepts discussed in previous courses, most notably PHYS*2180. Science communication skills developed in PHYS*2180 and IPS*3000 will be reinforced.
Section 1.10.2: Restrictions
None.
Section 1.10.3: Follow-on Courses
Many experiments in PHYS*3510 complement lecture material in other third year courses, most notably PHYS*3000 and PHYS*3230. As such, course notes and textbooks for these courses are excellent resources for many of the experiments conducted in PHYS*3510.
Lab notebook and scientific presentation (both verbal and written) skills will complement those developed in PHYS*4500 and IPS*3000.
Section 2: Assessment
Section 2.1: Final Grade Breakdown
Assessment Tool | Weighting |
---|---|
Lab Notebook (equal weighting for each of the 5 experiments) | 30% |
Formal Lab – Outline (2 outlines, equally weighted) | 5% |
Formal Lab – Science Paper (2 reports, equally weighted) | 35% |
Formal Lab – Poster First Draft | 2.5% |
Formal Lab – Poster Presentation | 7.5% |
Group Project – Essay | 10% |
Group Project – Oral Presentation | 10% |
All assessments submitted late without legitimate cause (see Section 2.3) will be penalized 10% per late day, to a maximum of 50%. After five days, the late work will no longer be accepted and the student will receive a grade of 0 for that assessment.
Section 2.1.1: Lab Notebooks
Notebooks will be evaluated based on the criteria described below, and will be available for pick-up on the following Monday during scheduled lab time. Students may continue to use their lab notebooks from PHYS*2180.
Students should be working in their lab notebooks as they perform the experiment, and the notebooks will be assessed using the following criteria:
- Materials & Methods (8)
• briefly describe what was done as it is done – you should be able to reproduce the procedure from the notebook without the lab outline!
• logging experimental conditions
• data recording
• dates, run times, file names, etc. - Results & Analysis (10)
• raw data (where applicable) and quality of that data
• graphs and brief discussions of the data
• questions asked in the lab outline, including derivations - Clarity (2)
• notebook should be legible
• anybody should be able to navigate through your lab notebook
Please note that your lab notebook does not require a detailed motivation/introduction section for each experiment. A summary of the key points is generally sufficient, however questions in the lab outline should be addressed and derivations should be completed. Much of this work can be done before you begin your experiment! If you are completing your notebook properly, you should only need to generate graphs, perform some calculations, and provide a very brief discussion of the data after the experiment.
Section 2.1.2: Formal Lab – Outlines
Each student will hand in two outlines for their formal lab reports (see Section 2.1.3). Outlines are commonly used while preparing scientific documents and generally streamline the process of writing scientific papers. Following the guidelines given in PHYS*2180 and on the PHYS*3510 Courselink page, outlines should demonstrate the intended flow of the document and indicate which equations, tables and/or graphs, and figures need to be included in the final paper. Please note that a rough draft of your paper does NOT constitute an outline. Outlines will be submitted via Courselink Dropbox one week before the science papers are submitted.
Section 2.1.3: Formal Lab – Science Paper
Each student will hand in two written formal lab reports, written in the style of a scientific paper. Formal lab reports will be submitted as PDF documents via Dropbox on Courselink, and the due dates are given in the course timetable (see Section 4.1).
Evaluation of the science papers will be based on students’ ability to properly motivate the experiment that was performed, to interpret and discuss their experimental data while using proper scientific writing styles, and to properly discuss experimental limitations within accepted error analysis frameworks. Spelling and grammar will be assessed in these reports. In general, your science papers should not exceed 8-10 pages (1.5 line spacing) for most experiments. The merit of the scientific arguments made in PHYS*3510 science papers will be assessed more heavily than in PHYS*2180, and students are expected to address experimental uncertainties more rigorously. Please note that you cannot submit a science paper for an experiment that was presented as a poster.
Section 2.1.4: Formal Lab – Poster (First Draft)
Each group will produce a scientific poster (48” wide by 36” high) summarizing the results of one of their experiments. This poster will be submitted electronically as a PDF document via Dropbox. The poster draft will be assessed by a Teaching Assistant, and useful feedback will be provided before the final posters are printed. Students are encouraged to browse the scientific posters found throughout the MacNaughton building for guidance. A good principle while designing your poster is to maintain a balance of roughly 30% text, 30% visuals, and 30% empty space. See Courselink for other recommendations. You cannot submit a poster for experiments that have been submitted as science papers.
Section 2.1.5: Formal Lab – Poster (Presentation)
Incorporating feedback received after the submitted draft, each student will print their posters (this typically costs $30-$40) and present them to their peers in a PHYS*3510/4500 Poster Session scheduled on Monday, April 1st from 2:30 – 5:20 PM in MacNaughton 417. Attendance at the poster session is mandatory for all students, so plan your extracurricular activities and jobs accordingly.
Students will be divided into two groups, presenters and evaluators. For the first 90 minutes, the presenters will present their poster in 5 minutes or less (with up to 2 minutes of questions afterwards) to their evaluators, and will be assessed using a provided rubric. After 90 minutes, the student presenter group and evaluator group will switch roles.
Section 2.1.6: Group Project – Essay
During the first 6 weeks of the semester, students will work in groups of three, randomly assigned by the course instructor. Each group will submit a collaborative essay, aimed at their peers in the style of a Scientific American article (see Courselink for example), describing a famous physics experiment or experiments. This essay will provide an overview of the relevant physics, particularly the experimental considerations, and describe the impact of that experiment on physical theories and understanding.
Suitable historical experiments include:
Optics
- invention of masers and lasers by Townes
- Michelson-Morley experiment testing the luminiferous aether
Quantum Physics
- Davisson-Germer experiment proving the de Broglie hypothesis
- Stern-Gerlach experiment and the discovery of spin angular momentum
- observation of quantized energy states in atoms by Franck and Hertz
Nuclear and Subatomic Physics
- Rutherford’s alpha-particle scattering experiment
- Chadwick’s discovery of the neutron OR discovery of nuclear fission by Fermi, Hahn, Strasser, Meitner, and Frisch OR discovery of artificial radioactivity by the Joliot-Curies
Biophysics and Soft Matter Physics
- Franklin’s X-ray crystallography experiments with DNA
- Pockels-Langmuir-Blodgett trough experiments
- Perrin’s study of colloidal suspensions
Electricity & Magnetism
- discovery of electromagnetic waves by Hertz
Condensed Matter Physics
- discovery of the transistor by Bardeen, Brattain, and Shockley
- experiments revealing the thermoelectric effect by Seebeck and Peltier
Students who wish to discuss a different project or experiment can do so if they receive permission from the instructor. Student topics must be unique to avoid overlap with other groups in the class. Students should avoid choosing essay topics that are closely related to previous summer research projects.
One essay per group will be submitted (via Dropbox as a PDF document) by midnight on Friday, February 15th.
Section 2.1.7: Group Project – Oral Presentation
Each group will present their chosen topic to their peers. The presentations will be no longer than 15 minutes, with 5 minutes for questions. All students are expected to attend the full 3 hours of the presentation session. The presentations will be held on Wednesday, February 13th from 2:30 – 5:20 PM in a room to be announced on Courselink.
Section 2.2: Time Conflicts Between Courses
Sometimes students will have a time conflict between a midterm exam in another course and either a lecture or a lab in this course. The University has a very clear policy to cover this situation: the regularlyscheduled lecture or lab holds priority. In other words, it is the responsibility of the faculty member who has scheduled the midterm exam to make special arrangements with students who have conflicts.
Section 2.3: Course Grading Policies
Section 2.3.1: Missed Assessments
If you are unable to meet an in-course requirement due to medical, psychological, or compassionate reasons, please email the course instructor or TA. See the undergraduate calendar for information on Regulations and Procedures for Academic Consideration.
Section 2.3.2: Accommodation of Religious Obligations
If you are unable to meet an in-course requirement due to religious obligations, please email the course instructor within two weeks of the start of the semester to make alternate arrangements. See the undergraduate calendar for information on regulations and procedures for Academic Accommodation of Religious Obligations.
Section 2.3.3: Mark Adjustments
If you have questions about any grade, please inquire promptly after the material has been returned to you. Students are ultimately responsible for ensuring that the grades on all submitted material were entered properly in Courselink – check the entered grades frequently throughout the semester and report any discrepancies to your teaching assistant or course instructor.
Section 3: Learning Resources
Section 3.1: Course Website
Course material, news, announcements, and grades will be regularly posted to the PHYS*3510 Courselink site. You are responsible for checking the site regularly. Please ensure that your grades are recorded correctly and notify the course instructor of any discrepancies.
Section 3.2: Primary Course Reference
None.
Section 3.3: Recommended Course References
- A.C. Melissinos and J. Napolitano, Experiments in Modern Physics (2nd Edition), Academic Press, 2003. (University of Guelph Library Call #: QC33.M52 2003)
- J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd Edition), University Science Books, 1997. (University of Guelph Library Call #: QC39.T4 1997)
- D.W. Preston and E.R. Dietz, The Art of Experimental Physics, Wiley & Sons, 1991. (University of Guelph Library Call #: QC33.P74 1991)
Students will typically make extensive of various textbooks from current and previous physics courses. Refer to specific lab outlines for more detailed references.
Section 3.4: Communication and Email Policy
Laboratory sessions are your primary opportunity to ask questions about the course. If you wish to obtain help from the course instructor at another time, please email to make an appointment or see them before or after labs to arrange a mutually convenient time. As per university regulations, all students are required to check their <uoguelph.ca> e-mail account regularly: email is the official route of communication between the University of Guelph and its students.
Section 4: Teaching and Learning Activities
Section 4.1: Timetable
Week | Dates | Course Activities | Assessments Due |
---|---|---|---|
1 | Jan 07 – Jan 11 |
|
N/A |
2 | Jan 14 – Jan 18 |
|
N/A |
3 | Jan 21 –Jan 25 |
|
|
4 | Jan 28 – Feb 01 |
|
|
5 | Feb 04 – Feb 08 |
|
|
6 | Feb 11 – Feb 15 |
|
|
n/a | Feb 18 – Feb 22 | Winter Break | N/A |
7 | Feb 25 – Mar 01 |
|
|
8 | Mar 04 – Mar 08 |
|
|
9 | Mar 11 – Mar 15 |
|
|
10 | Mar 18 – Mar 22 |
|
|
11 | Mar 25 – Mar 29 |
|
|
12 | Apr 01 – Apr 05 |
|
|
Section 4.2: Experiment Scheduling
Students will be asked to split into two equal groups, Group A and Group B. Those in Group A will begin experiments in Week 2 and will have one week to complete the data collection for that experiment. Students in Group B will then have access to the equipment in Week 3, for one week. The two groups will alternate in this fashion throughout the semester with Group A doing experiments during the even weeks and Group B doing experiments during the odd weeks. All experiments should be completed by Week 11 (note that both groups are scheduled to complete experiments in Week 11 to allow everybody to have a chance to complete their work before the end of the semester).
Students are required to complete the experiments during the assigned lab periods. Students requiring additional time to complete an experiment may sign out keys to MacNaughton 417 from the course instructor (see Section 6.3) in the rare occasions that an experiment cannot be completed in the allotted 6 hours of lab time.
Each student will be required to do 5 of the experiments listed below:
Modern Physics
- Electron Spin Resonance
- Millikan Oil Drop Experiment
Nuclear Physics
- Gamma-Ray Spectroscopy Using a NaI(Tl) Detector
- The Speed of Photons: Galileo’s Technique Modernized
Thermodynamics and Statistical Physics
- Noise Fundamentals
Waves and Optics
- The Velocity of Sound: The Debye-Sears Experiment
- The Transmission Line
- Fourier Optics
- Physics of Ultrasound
Note that students continuing on to PHYS*4500 should make sure that they complete the Gamma-Ray Spectroscopy Using a NaI(Tl) Detector and Fourier Optics experiments, as these are prerequisites for experiments available to PHYS*4500 students.
Section 4.3: Signing Up for Experiments
Students can sign up for experiments using the Google Sheets link provided on Courselink. Please do not sign up for experiments outside of your assigned weeks unless all the groups for that week have already signed up for an experiment. Experiments are assigned on a first come, first-served basis.
Section 4.4: Other Important Dates
Friday March 8th is the fortieth class day, the last day to drop one semester courses.
Section 5: Lab Safety
Section 5.1: Department of Physics Laboratory Safety Policy
The Department of Physics is committed to ensuring a safe working and learning environment for all students, staff and faculty. As a student in a laboratory course, you are responsible for taking all reasonable safety precautions and following the lab safety rules specific to the lab you are working in. In addition, students are responsible for reporting all safety issues to the graduate teaching assistant or course instructor as soon as possible. Students are not required to work in an environment that they deem to be unsafe. If you have any concerns whatsoever, please consult your teaching assistant or course instructors!
In this course, students may be exposed to the following potential hazards:
- \(\gamma\)-radiation and x-ray sources
- intense light, including laser light and strobe lights
- voltages and currents that can be harmful if proper precautions are not taken
- compressed gases
- cryogenic liquids: liquid nitrogen and liquid helium
All experiments have been designed such that students have minimal (but not zero!) risk if proper laboratory protocols are followed. At all times, students must be aware of the risks of their experiment and the positioning of their fellow students and behave accordingly.
Section 5.2: Food and Drink in the Laboratory
As with all laboratories on the University of Guelph campus, ALL food and drink is strictly prohibited in the laboratory. This applies to all faculty, staff, and students. In the PHYS*3510 laboratory, this rule is strictly enforced as a criterion for lab certification with the Radiation Safety Office at the University of Guelph. Students must not, under any circumstances, bring any food or drink into the laboratory. If students have water bottles or food in their backpacks, these must be left at the front of the room and not be accessed within the room at any time.
Section 5.3: After-Hours Access to the Laboratory
Students who need to work on their experiment outside normal course hours may sign out a key to MacNaughton 417 from the course instructor, on a case-by-case basis. Students must ensure that they are never in the laboratory alone, and must obey all safety rules. Should a course instructor, teaching assistant or lab supervisor come across students with food or drink in the laboratory, the offenders will be removed from the lab and receive a mark of 0 on that experiment.
Section 6: Academic Misconduct and Collaboration
Section 6.1: Collaboration
Collaboration and communication are essential for progress and advancement; much of modern society is built upon these skills. Students are encouraged to collaborate and discuss course concepts! However, all material submitted for grading must be each student's own work. Plagiarism is a form of academic misconduct, and will not be tolerated.
A good guideline when it comes to crossing the line from collaboration to academic misconduct is that a student must never look at another student’s written work. For students seeking help from their peers, ask conceptual questions as opposed to, “How do you derive Equation 4?” For student helping their peers, never give the answer explicitly, but explain your reasoning.
Section 6.2: Academic Misconduct
The University of Guelph is committed to upholding the highest standards of academic integrity and it is the responsibility of all members of the University community – faculty, staff, and students – to be aware of what constitutes academic misconduct and to do as much as possible to prevent academic offences from occurring. University of Guelph students have the responsibility of abiding by the University's policy on academic misconduct regardless of their location of study; faculty, staff and students have the responsibility of supporting an environment that discourages misconduct. Students need to remain aware that instructors have access to and the right to use electronic and other means of detection.
Please note: Whether or not a student intended to commit academic misconduct is not relevant for a finding of guilt. Hurried or careless submission of assignments does not excuse students from responsibility for verifying the academic integrity of their work before submitting it. Students who are in any doubt as to whether an action on their part could be construed as an academic offence should consult with a faculty member or faculty advisor. The Academic Misconduct Policy is detailed in the Undergraduate Calendar at the following link.
Section 6.3 Turnitin
In this course, your instructor will be using Turnitin, integrated with the CourseLink Dropbox tool, to detect possible plagiarism, unauthorized collaboration or copying as part of the ongoing efforts to maintain academic integrity at the University of Guelph.
All submitted assignments will be included as source documents in the Turnitin.com reference database solely for the purpose of detecting plagiarism of such papers. Use of the Turnitin.com service is subject to the Usage Policy posted on the Turnitin.com site.
A major benefit of using Turnitin is that students will be able to educate and empower themselves in preventing academic misconduct. In this course, you may screen your own assignments through Turnitin as many times as you wish before the due date. You will be able to see and print reports that show you exactly where you have properly and improperly referenced the outside sources and materials in your assignment.
Section 7: Accessibility
Section 7.1: Accessibility
The University of Guelph is committed to creating a barrier-free environment. Providing services for students is a shared responsibility among students, faculty and administrators. This relationship is based on respect of individual rights, the dignity of the individual and the University community's shared commitment to an open and supportive learning environment. Students requiring service or accommodation, whether due to an identified, ongoing disability or a short-term disability should contact the University of Guelph’s Accessibility Services as soon as possible.
For more information, contact Accessibility Services at 519-824-4120 ext. 56208, email accessibility@uoguelph.ca, or visit their website: https://wellness.uoguelph.ca/accessibility/
Section 7.2: Electronic Recording of Classes
The electronic recording of classes is expressly forbidden without the prior consent of the instructor. This prohibition extends to all components of courses, including, but not limited to, lectures, tutorials, and lab instruction, whether conducted by the instructor or teaching assistant, or other designated person. When recordings are permitted they are solely for the use of the authorized student and may not be reproduced, or transmitted to others, without the express written consent of the instructor.
Section 7.3: Posting Course Materials on Websites
Posting any course materials, including lecture notes or experiment outlines, is strictly prohibited. These materials are copyright of the course instructors, Department of Physics, and University of Guelph.
Section 8: Course Evaluation
Section 8.1: Course Evaluation
The Department of Physics requires student assessment of all courses taught by the Department. These assessments provide essential feedback to faculty on their teaching by identifying both strengths and possible areas of improvement. In addition, annual student assessment of teaching provides part of the information used by the Department’s Tenure and Promotion Committee in evaluating the faculty member's contribution in the area of teaching.
The Department's teaching evaluation questionnaire invites student response both through numerically quantifiable data, and written student comments. In conformity with University of Guelph Faculty Policy, the Department’s Tenure and Promotions Committee only considers comments signed by students (choosing "I agree" in question 14). Your instructor will see all signed and unsigned comments after final grades are submitted. Written student comments may also be used in support of a nomination for internal and external teaching awards.
Note: No information will be passed on to the instructor until after the final grades have been submitted.