Intermediate Laboratory (PHYS*3510)

Code and section: PHYS*3510*01 and 02

Term: Winter 2021

Instructor: Christian Schultz-Nielsen


Course Details

Calendar Description

This modular course consists of experiments in modern and classical physics. Modules include laboratory instrumentation employing computers, modern physics, waves and optics, molecular physics, biophysics, and solid state physics.

Pre-Requisites:  PHYS*2180 or (NANO*2100, PHYS*2310)

Course Description

This course allows students to perform important experiments that illustrate topics discussed in third- and fourth-year physics courses.  The students will obtain experience using modern laboratory instruments and practice methods of data acquisition and analysis.  The student’s scientific communication skills and ability to search the scientific literature will be developed. 

As discussed in the University of Guelph Undergraduate Calendar, a 0.50 credit course carries an expectation of 10-12 student-effort hours per week, including time allocated to lectures, labs, and tutorials.  Students enrolled in PHYS*3510 should ensure that they allocate hours to this course every week, as the workload is significant and can become overwhelming if left to the last minute.



There are no lectures associated with PHYS*3510.


Section 01:  Mondays and Tuesdays 15:00 - 17:50 in MacNaughton 417
Section 01:  Wednesdays and Fridays 15:00 - 17:50 in MacNaughton 417

See the semester schedule below for more details – there will not be laboratories every week.

Final Exam

There is no final exam associated with PHYS*3510.

COVID-19 Disclaimer

As an empirical science, physics progams (Biological & Medical Physics, Chemical Phyiscs, Physics, and Theoretical Physics) at the University of Guelph require that graduating students master key tools and techniques of experimental physics to satisfy the learning objectives of both their individual major and the BSc Program.  The Department of Physics does not believe that these tools and techniques can be mastered using remote delivery, and thus the course is therefore being offered in a face-to-face setting. 

The ongoing COVID-19 pandemic has necessitated various responses from the Government of Ontario and/or the Wellington-Dufferin-Guelph Public Health unit, including lockdowns.  Due to the evolving nature of the pandemic, all dates in this course outline are subject to change should an enforced lockdown of the course or the MacNaughton Building be mandated.  We ask that students be understanding of this need for flexibility.  Note that this flexibility may include the need to change the posted grading scheme for the course.  Changes to the course outline will be communicated via Courselink, and students will be consulted before any changes are made - students are responsible for checking Courselink regularly!

Students must at all times follow all public health guidelines.  These include:

  • students must complete the University of Guelph COVID-19 Daily Screening Form each day before arriving on campus
  • face coverings must be worn at all times while students are on campus
  • students and instructors must maintain physical separation of 2 m at all times, including while waiting in the hallways to get into their learning spaces
  • upon entering the lab space, students must use the provided disinfecting wipes to sanitize their workstation, keyboard and mouse.
  • follow all updated public health guidelines that are issued during the semester as the pandemic evolves.

Instructional Support

Instructional Support Team

Instructor:  Christian Schultz-Nielsen
Telephone:  +1-519-824-4120 x56618
Office:  MACN 413

Lab Technician:  David Urbshas
Telephone:  +1-519-824-4120 x53995
Office:  MACN 104

Teaching Assistant: Devin Hymers
Office:  MACN 401

Teaching Assistant: Scott Annett
Office:  MACN 401

Learning Resources


  • A.C. Melissinos and J. Napolitano, Experiments in Modern Physics (2nd Edition), Academic Press, 2003. (University of Guelph Library Call #: QC33.M52 2003) (Textbook)
  • J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd Edition), University Science Books, 1997. (University of Guelph Library Call #: QC39.T4 1997 (Textbook)
  • D.W. Preston and E.R. Dietz, The Art of Experimental Physics, Wiley & Sons, 1991. (University of Guelph Library Call #: QC33.P74 1991) (Textbook)

Learning Outcomes

Course Learning Outcomes

By the end of this course, sstudents should be able to:

  1. operate various experimental physics tools and devices, including multimeters, oscilloscopes, and multichannel analyzers.
  2. operate as a productive and efficient member of a small team with relatively little guidance from the course instructor.
  3. analyze experimental data, using accepted error analysis methodologies, to verify theoretical predictions.
  4. follow proper scientific lab notebook protocols, including the recording of experimental data and experimental conditions, especially in cases where the student's experiment deviated from provided experimental outlines.
  5. demonstrate intermediate proficiency with laboratory and radiation safety protocols, including proper handling of sealed gamma-ray emitting sources.
  6. identify and synthesize relevant scientific literature to present a coherent scientific argument at a level appropriate to your peers.
  7. demonstrate proficiency at incorporating theoretical knowledge developed in other physics courses and/or the scientific literature to draw appropriate inferences and conclusions from experimental results.

B.Sc. Honours Degree

Successfully completing this course will contribute to the following:

# Outcome Learning Outcome
1 Problem Solving & Critical Thinking 1, 2, 3, 4, 6, 7
1.1 Critically evaluate ideas and arguments by gathering and integrating relevant information, assessing its credibility, and synthesizing evidence to formulate a position. 2, 3, 4, 6, 7
1.2 Identify problems and independently propose solutions using creative approaches, acquired through interdisciplinary experiences, and a depth and breadth of knowledge/expertise. 1, 2, 4, 6
1.3 Accurately interpret and use numerical information to evaluate and formulate a position. 2, 3, 4, 6, 7
2 Communication 4, 6, 7
2.1 Accurately and effectively communicate ideas, arguments and analyses, to a range of audiences, in graphic, oral and written form. 4, 6, 7
3 Professional and Ethical Behaviour 1, 2, 4, 5, 6
3.1 Demonstrate personal and professional integrity by respecting diverse points of view and the intellectual contribution of others, and by demonstrating a commitment to honesty and equity, and awareness of sustainability, in scientific practice and society at large. 2, 4, 6
3.2 Collaborate effectively as part of a team by demonstrating mutual respect, leadership, and an ability to set goals and manage tasks and timelines. 1, 2, 4, 5, 6
3.3 Plan for professional growth and personal development within and beyond the undergraduate program. 4
4 Scientific Method 1, 2, 3, 4, 7
4.1 Apply scientific methods and processes by formulating questions, designing investigations and synthesizing data to draw conclusions and make scientifically-based decisions. 1, 2, 3, 4, 7
4.2 Generate and interpret scientific data using quantitative, qualitative and analytical methodologies and techniques. 1, 2, 3, 4, 7
5 Breadth & Depth of Understanding in a Particular Scientific Discipline 2, 3, 5, 6, 7
5.1 Apply the core concepts of math, physics, chemistry and biology to a chosen scientific discipline. 2, 3, 6, 7
5.2 Demonstrate knowledge of the ethical, economic, commercial and social implications of scientific discovery and technological innovation. 5, 6
5.3 Interpret current scientific concepts and gaps in knowledge (and methods) in light of the historical development of a chosen discipline. 3, 6, 7
6 Scientific Technology & Techniques in a Scientific Discipline 2, 4, 6, 7
6.1 Apply contemporary research methods, skills and techniques to conduct independent inquiry in a chosen scientific discipline. 2, 4, 6, 7

Teaching and Learning Activities

Semester Schedule

Week Course Activities Assessments Due (Section 01; Section 02)
1 (Jan 11 - Jan 15)
  • Radiation Safety Training (Fri Jan 15) - Online
  • ​Lab Safety Training (TBD) - Online
2 (Jan 18 - Jan 22) Experiment #1 (Group A)    
3 (Jan 25 - Jan 29) Experiment #1 (Group B) Group A Notebook #1 (Tue Jan 26; Fri Jan 29)
4 (Feb 01 - Feb 05) Experiment #2 (Group A) Group B Notebook #1 (Tue Feb 02; Fri Feb 05)
5 (Feb 08 - Feb 12) Experiment #2 (Group B) Group A Notebook #2 (Tue Feb 09; Fri Feb 12)
6 (Feb 15 - Feb 19) Winter Break - No Labs Scheduled  
-- (Feb 22 - Feb 26) Experiment #3 (Group A) Group B Notebook #2 (Tue Feb 23; Fri Feb 26)
Group A Science Paper #1 (Tue Feb 26; Fri Feb 26)
7 (Mar 01 - Mar 05) Experiment #3 (Group B) Group A Notebook #3 (Tue Mar 02; Fri Mar 05)
Group B Science Paper #1 (Tue Mar 02; Fri Mar 05)
8 (Mar 08 - Mar 12) Experiment #4 (Group A) Group B Notebook #3 (Tue Mar 09; Fri Mar 12)
Group A Poster Draft (Tue Mar 09; Fri Mar 12)
9 (Mar 15 - Mar 19) Experiment #4 (Group B) Group A Notebook #4 (Tue Mar 16; Fri Mar 19)
Group B Poster Draft (Tue Mar 16; Fri Mar 19)
10 (Mar 22 - Mar 26) Experiment #5 (Groups A/B) Group B Notebook #4 (Tue Mar 23; Fri Mar 26)
11 (Mar 29 - Apr 02) No experiments scheduled
Good Friday Statutory Holiday (Fri Apr 02)
Group Presentations (Tue Mar 30; Wed Mar 31)
​Group Article (Tue Mar 30; Wed Mar 31)
12 (Apr 05 - Apr 09) No experiments scheduled Groups A/B Notebook #5 (Tue Apr 06; Fri Apr 09)
Groups A/B Science Paper #2 (Tue Apr 06; Fri Apr 09)
​Groups A/B Final Poster (Tue Apr 06; Fri Apr 09)
13 (Apr 12 - Apr 16) No experiments scheduled
Last day of classes (Mon Apr 12)
Exams commence (Thu Apr 15)


As mentioned previously, the above schedule may need to be adjusted should a COVID-19 outbreak necessitate lockdown of the course or the MacNaughton Building.  Students should consult Courselink regularly to receive up-to-the-date information.

Experiment Scheduling

Students will perform experiments in alternating weeks, and should sign up for the experiments they intend to do on the Google Sheets link provided in Courselink.  Experiments are assigned on a first-come, first-served basis.

During a week where no experiment is scheduled, students should complete the analysis for the lab notebook that is due that week and begin preparing for the following week's experiment.  All experiments should be completed by Week 11.  Students are required to complete the experiments during the assigned lab periods.  

Each student will be required to do 5 of the experiments listed below:

Modern Physics

  1. Electron spin resonance
  2. Millikan oil drop experiment

Nuclear Physics

  1. Gamma-ray spectroscopy using a NaI(Tl) detector*
  2. The speed of photons: Galileo's technique modernized

Thermodynamics and Statistical Physics

  1. Noise fundamentals

Waves and Optics

  1. The velocity of sound: the Debye-Sears experiment
  2. The transmission line
  3. Fourier optics*
  4. Physics of ultrasound

Note that students continuing to PHYS*4500 should complete the experiments denoted with an asterisk as these are prerequisites or recommended to have completed for experiments available to PHYS*4500 students.


All assessments submitted late without legitimate cause will be penalized 10% per late day, to a maximum of 50%.  After five days, the late work will no longer be accepted and the student will receive a grade of 0 for that assessment.

Final Grade Breakdown

Assessment Tool Weighting
Lab Notebook (equal weighting for each of the 5 experiments) 40%
Science Paper (2 experiments, equally weighted) 35%
Poster Draft 2%
Final Poster 3%
Group Presentation 7.5%
Group Article 7.5%
Course Performance & Participation 5%

Lab Notebooks

Students may continue to use their lab notebooks from PHYS*2180, if they choose.  Lab notebooks assessments will be submitted as a single PDF document via Dropbox and will be graded electronically.

Students should be working in their lab notebooks as they perform the experiment, and the notebooks will be assessed using the following criteria:

Materials & Methods (8 marks total)

  • briefly describe what was done as it is done – you should be able to reproduce the procedure from the notebook without the lab outline!
  • logging experimental conditions
  • data recording
  • dates, run times, file names, etc.

Results & Analysis (10 marks total)

  • raw data (where applicable) and quality of that data
  • graphs and brief discussions of the data
  • questions asked in the lab outline, including derivations

Clarity (2 marks total)

  • notebook should be legible
  • anybody should be able to navigate through your lab notebook

A more detailed summary of lab notebook expectations is available on Courselink.

Science Paper

Each student will hand in two written formal lab reports, written in the style of a scientific paper.  Formal lab reports will be submitted as PDF documents via Dropbox on Courselink, and the due dates are given in the course schedule. 

Evaluation of the science papers will be based on students’ ability to properly motivate the experiment that was performed, to interpret and discuss their experimental data while using proper scientific writing styles, and to properly discuss experimental limitations within accepted error analysis frameworks. Spelling and grammar will be assessed in these reports.  In general, your science papers should not exceed 8-10 pages (1.5 line spacing) for most experiments, including graphs and figures but not including appendices and references.  The merit of the scientific arguments made in PHYS*3510 science papers will be assessed more heavily than in PHYS*2180, and students are expected to address experimental uncertainties more rigorously.  Papers at this level should include at least 5 suitable references, such as journal articles or textbooks.  The lab outline does not count as one of your references.  Please note that you cannot submit a science paper for an experiment that was presented as a poster.

For each paper, students will also submit the outline they used to generate the paper.  Outlines are commonly used while preparing scientific documents and generally streamline the process of writing scientific papers.  Following the guidelines given in PHYS*2180 and on the PHYS*3510 Courselink page, outlines should demonstrate the intended flow of the document and indicate which equations, tables and/or graphs, and figures need to be included in the final paper.  Please note that a rough draft of your paper does NOT constitute an outline.  Outlines will be submitted via Courselink Dropbox at the same time as the science paper.

Poster - First Draft

Each student will produce a scientific poster (48” wide by 36” high) summarizing the results of one of their experiments.  This poster will be submitted electronically as a PDF document via Dropbox. 

The poster draft will be assessed by the Teaching Assistant, and useful feedback will be provided before the final poster drafts are submitted.  Students are encouraged to browse the scientific posters found throughout the MacNaughton building for guidance.  A good principle while designing your poster is to maintain a balance of roughly 30% text, 30% visuals, and 30% empty space.  See Courselink for other recommendations.  You cannot submit a poster for experiments that have been submitted as science papers.

Final Poster

Incorporating feedback received after the submitted draft, each student will submit their final poster via Dropbox together with a brief script of what they would discuss if they presented their poster.  These will be graded by the instructor.  The final posters would normally be printed off and presented to your peers during a PHYS*3510/4500 Poster Session, but physical distancing requirements unfortunately preclude this event in Winter 2021 academic semester.  For any students that would like the experience of presenting a poster, please contact your instructor directly to set up an individual presentation time.

Group Science Article

Throughout the semester, students will work in groups of two to three, randomly assigned by the course instructor, and research a historically relevant experiment inphysics or a related field.  Each group will submit a single science article (as a PDF document via Dropbox) aimed at a more general science audience; in particular, students should pitch their discussion such that it can be followed by peers in biology or chemistry programs at the University of Guelph, science students that lack the detailed physics knowledge of the various physics majors.  There is no specific minimum or maximum page count on these articles, however students should strive for a length of 8-15 pages (including figures).

Group Presentation

Throughout the semester, students will work in groups of two to three, randomly assigned by the course instructor, and research a historically relevant experiment inphysics or a related field.  Each group will present their work to their peers (we will try to arrange an in-person session for these presentations, however the evolving pandemic situation may necessitate that we pivot the presentations to an online format), providing an overview of the relevant physics, particularly the experimental considerations, and describe the impact of that experiment on physical theories and understanding. The presentations will be no longer than 15 minutes, with 5 minutes for questions.  All students are expected to attend the full 3 hours of the presentation session.  The date of the presentations is given in the Semester Schedule table above, and the location will be announced on Courselink.

Suitable historical experiments include:


  • invention of masers and lasers by Townes
  • Michelson-Morley experiment testing the luminiferous aether

Quantum Physics

  • Davisson-Germer experiment proving the de Broglie hypothesis
  • Stern-Gerlach experiment and the discovery of spin angular momentum
  • observation of quantized energy states in atoms by Franck and Hertz

Nuclear and Subatomic Physics

  • Rutherford’s alpha-particle scattering experiment
  • Chadwick’s discovery of the neutron OR discovery of nuclear fission by Fermi, Hahn, Strasser, Meitner, and Frisch OR discovery of artificial radioactivity by the Joliot-Curies

Biophysics and Soft Matter Physics

  • Franklin’s X-ray crystallography experiments with DNA
  • Pockels-Langmuir-Blodgett trough experiments
  • Perrin’s study of colloidal suspensions

Electricity & Magnetism

  • discovery of electromagnetic waves by Hertz

Condensed Matter Physics

  • discovery of the transistor by Bardeen, Brattain, and Shockley
  • experiments revealing the thermoelectric effect by Seebeck and Peltier

Students who wish to discuss a different project or experiment can do so if they receive permission from the instructor.  Student topics must be unique to avoid overlap with other groups in the class.  Students should avoid choosing presentation topics that are closely related to previous summer research projects.

Course Performance & Participation

This grade will reflect the student's contributions and initiative during the scheduled laboratory hours.  Students will be assessed on their ability to follow lab protocols, their autonomy (within reason) while conducting experiments, and their contributions during group presentations and poster presentations in terms of peer feedback and/or questions.

Course Statements

Lab Safety

Department of Physics Laboratory Safety Policy

The Department of Physics is committed to ensuring a safe working and learning environment for all students, staff and faculty.  As a student in a laboratory course, you are responsible for taking all reasonable safety precautions and following the lab safety rules specific to the lab you are working in.  In addition, students are responsible for reporting all safety issues to the graduate teaching assistant or course instructor as soon as possible.  Students are not required to work in an environment that they deem to be unsafe.  If you have any concerns whatsoever, please consult your teaching assistant or course instructors!

In this course, students may be exposed to the following potential hazards:

  • γ -radiation and x-ray sources
  • intense light, including laser light and strobe lights
  • voltages and currents that can be harmful if proper precautions are not taken
  • compressed gases
  • cryogenic liquids:  liquid nitrogen and liquid helium

All experiments have been designed such that students have minimal (but not zero!) risk if proper laboratory protocols are followed.  At all times, students must be aware of the risks of their experiment and the positioning of their fellow students and behave accordingly.

COVID-19 Safety

As you are likely aware, the Wellington-Dufferin-Guelph (WDG) Public Health region was designated as a Red - Control zone on Monday, December 14th 2020.  This designation has now been superceded by the Government of Ontario's provincewide shutdown that takes effect at 00:01 on Saturday, December 26th 2020.  The shutdown is currently scheduled to last for 28 days in the WDG Public Heatlh region.  Under the guidance provided by the Ontario Ministry of Health, face-to-face labs are permitted to continue as scheduled so long as there are 10 or fewer people in the room, marks are worn at all times, and 2 m of physical separation between individuals in the learning space is maintained at all times.

The Department of Physics will be offering PHYS*2180 (Experimental Techniques in Physics), PHYS*3510 (Intermediate Laboratory) and PHYS*4500 (Advanced Physics Laboratory) during the Winter 2021 semester.  The labs in these courses will be face-to-face and will follow all WDG Public Health and University of Guelph COVID guidelines.  We did not lightly make the decision to run face-to-face experimental physics courses during a pandemic.  Student safety is of paramount importance, and we recognize that many students have health and financial concerns about a face-to-face offering of a required course when the rest of their courses are in online formats.  However, the Department of Physics at the University of Guelph must also fulfill the learning outcomes expected for graduates from our various physics majors. 

The success of these courses is contingent upon all students in the courses following public health guidelines, most notably physical distancing, hand washing, wearing your face coverings around people outside your immediate household,  and minimizing your potential exposure risks to the best of your ability.  In a face-to-face lab setting, the safety of the students, graduate teaching assistants, and instructors is dictated by the least safe individuals in the class.  Please be responsible over the winter holidays to minimize potential exposures to COVID.  Upon returning to Guelph for the Winter semester, please follow the University of Guelph's guidance that "you are strongly encouraged to isolate with the members of your household for two weeks to help reduce the risk of spreading COVID-19. Remember, those who have COVID-19 can spread the virus before they show any symptoms."

During the Winter 2021 semester, do not attend a scheduled experiment if you are feeling ill.  Rescheduling experiments in these circumstances is not an inconvenience!

Please follow all physical distancing signage within the learning spaces.  While waiting to enter the labs, please ensure that you always maintain 2 m of separation from your peers.  The laboratories will be configured to encourage one-way traffic for people moving throughout the rooms; in circumstances where this is not feasible, students and instructors will make their intended movements clear to others in the room to maintain 2 m separation.  Suitable face coverings must be appropriately worn at all times while in the MacNaughton building.  Hand sanitizer will be available at every lab bench, and disinfecting wipes should be used to sanitize the lab bench and computer keyboard/mouse immediately upon entry.  Lab equipment will be sanitized by Department of Physics staff before and after each lab section - please do not wipe down equipment yourself, as some of the more sensitive equipment can be damaged by improper handling.

Food and Drink in the Laboratory

As with all laboratories on the University of Guelph campus, ALL food and drink is strictly prohibited in the laboratory.  This applies to all faculty, staff, and students.  In the PHYS*3510 laboratory, this rule is strictly enforced as a criterion for lab certification with the Radiation Safety Office at the University of Guelph.  Students must not, under any circumstances, bring any food or drink into the laboratory.  If students have water bottles or food in their backpacks, these must be left at the front of the room and not be accessed within the room at any time.

Course Evaluation

The Department of Physics requires student assessment of all courses taught by the Department. These assessments provide essential feedback to faculty on their teaching by identifying both strengths and possible areas of improvement. In addition, annual student assessment of teaching provides part of the information used by the Department’s Tenure and Promotion Committee in evaluating the faculty member's contribution in the area of teaching.

The Department's teaching evaluation questionnaire invites student response both through numerically quantifiable data, and written student comments. In conformity with University of Guelph Faculty Policy, the Department’s Tenure and Promotions Committee only considers comments signed by students (choosing "I agree" in question 14). Your instructor will see all signed and unsigned comments after final grades are submitted. Written student comments may also be used in support of a nomination for internal and external teaching awards.

No information will be passed on to the instructor until after the final grades have been submitted.

University Statements

Email Communication

As per university regulations, all students are required to check their e-mail account regularly: e-mail is the official route of communication between the University and its students.

When You Cannot Meet a Course Requirement

When you find yourself unable to meet an in-course requirement because of illness or compassionate reasons please advise the course instructor (or designated person, such as a teaching assistant) in writing, with your name, id#, and e-mail contact. The grounds for Academic Consideration are detailed in the Undergraduate and Graduate Calendars.

  • Undergraduate Calendar - Academic Consideration and Appeals
  • Graduate Calendar - Grounds for Academic Consideration
  • Associate Diploma Calendar - Academic Consideration, Appeals and Petitions

Drop Date

Students will have until the last day of classes to drop courses without academic penalty. The deadline to drop two-semester courses will be the last day of classes in the second semester. This applies to all students (undergraduate, graduate and diploma) except for Doctor of Veterinary Medicine and Associate Diploma in Veterinary Technology (conventional and alternative delivery) students. The regulations and procedures for course registration are available in their respective Academic Calendars.

  • Undergraduate Calendar - Dropping Courses
  • Graduate Calendar - Registration Changes
  • Associate Diploma Calendar - Dropping Courses

Copies of Out-of-class Assignments

Keep paper and/or other reliable back-up copies of all out-of-class assignments: you may be asked to resubmit work at any time.


The University promotes the full participation of students who experience disabilities in their academic programs. To that end, the provision of academic accommodation is a shared responsibility between the University and the student.

When accommodations are needed, the student is required to first register with Student Accessibility Services (SAS). Documentation to substantiate the existence of a disability is required; however, interim accommodations may be possible while that process is underway.

Accommodations are available for both permanent and temporary disabilities. It should be noted that common illnesses such as a cold or the flu do not constitute a disability.

Use of the SAS Exam Centre requires students to book their exams at least 7 days in advance and not later than the 40th Class Day.

For Guelph students, information can be found on the SAS website

For Ridgetown students, information can be found on the Ridgetown SAS website

Academic Integrity

The University of Guelph is committed to upholding the highest standards of academic integrity, and it is the responsibility of all members of the University community-faculty, staff, and students-to be aware of what constitutes academic misconduct and to do as much as possible to prevent academic offences from occurring. University of Guelph students have the responsibility of abiding by the University's policy on academic misconduct regardless of their location of study; faculty, staff, and students have the responsibility of supporting an environment that encourages academic integrity. Students need to remain aware that instructors have access to and the right to use electronic and other means of detection.

Please note: Whether or not a student intended to commit academic misconduct is not relevant for a finding of guilt. Hurried or careless submission of assignments does not excuse students from responsibility for verifying the academic integrity of their work before submitting it. Students who are in any doubt as to whether an action on their part could be construed as an academic offence should consult with a faculty member or faculty advisor.

  • Undergraduate Calendar - Academic Misconduct
  • Graduate Calendar - Academic Misconduct

Recording of Materials

Presentations that are made in relation to course work - including lectures - cannot be recorded or copied without the permission of the presenter, whether the instructor, a student, or guest lecturer. Material recorded with permission is restricted to use for that course unless further permission is granted.


The Academic Calendars are the source of information about the University of Guelph’s procedures, policies, and regulations that apply to undergraduate, graduate, and diploma programs.

Academic Calendars