PhD Thesis Presentation: Tidal Response of a Rotating Neutron Star in General Relativity

Date and Time

Location

MacN 415

Details

PhD Thesis Presentation

Candidate: Phil Landry

Abstract 

Internal-structure-dependent tidal deformations in inspiralling neutron star binaries alter the phase of the gravitational waves generated by these systems’ orbital motion. Measurement of the tidal phase shift could serve as a probe of the neutron star equation of state, which is poorly constrained above nuclear density. Motivated by this prospect, I extend the general-relativistic theory of tidal deformations to the astrophysically relevant case of spinning bodies. Working in a perturbative framework of weak, slowly varying tides and slow rotation, I find that the familiar gravitational Love numbers K2el and K2mag, which fully describe the external geometry of a deformed nonrotating body, must be supplemented by rotational-tidal Love numbers to account for couplings between the body’s spin and the applied tidal field. By integrating the Einstein field equations inside the body, I compute the rotational-tidal Love numbers explicitly for polytropes, and I find that they vanish identically for black holes. The field equations also reveal that the tidal field generically induces time-dependent fluid motions within the rotating body; these tidal currents are dynamical even if the tidal field is stationary. I calculate the amplitude of the currents for a typical neutron star in an equal-mass binary system, and find that it is on the order of kilometers per second.

Examination Committee:

  • Dr. Robert Wickham, Chair
  • Dr. Eric Poisson, Advisor
  • Dr. Liliana Caballero
  • Dr. Luis Lehner
  • Dr. John Friedman, External Examiner (University of Wisconsin-Milwaukee)

Find related events by keyword

Events Archive